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â-Peptides solely composed ofâ-amino acids display new types
of conformations such as helical structures.1 The question whether
peptides with a mixed composition of bothR- andâ-amino acids
display conformational preferences has only been addressed with
few nonrepresentative examples, for example, peptides containing
â-alanine2 or modules exerting a strong conformational bias (e.g.,
proline,D-amino acids),3 thus not revealing general design rules.

We report on the finding that incorporation of a distinct
â-amino acid in cyclic peptides results in the stabilization of the
overall secondary structure. Within all tetra- and pentapeptides
examined by us,â-amino acid residues preferably occupy the
central sequence position of a modifiedγ-turn conformation, in
the following termed pseudoγ-turn (Ψγ-turn). The conforma-
tional bias of theâ-amino acid residue employed even overrides
the strong preference of aD-amino acid residue, commonly found
in the i + 1 position ofâII ′-turns. According to the experimental
conformational analysis ofâ-amino acid-containing peptides, the
â-amino acids act asγ-turn mimetics. These findings might
provide a new principle for the design of cyclopeptides with
control of conformation.

For the structural design studies conducted in our group, we
envisioned cyclic RGD peptides of known 3D structure and
biological activity as conformational platforms, ideally suited for
the systematic investigation of both structural and biological
consequences ofâ-amino acid incorporation. The triad Arg-Gly-
Asp (RGD) is known to be a universal cell recognition sequence
binding to cell surface-exposed integrins, thus mediating cell-
cell and cell-matrix interactions. The cyclic hexapeptide1
described by Kessler et al. efficiently inhibits binding of fibrinogen
to the integrinRIIbâ3 involved in thrombocyte aggregation, while
the cyclic pentapeptide2 prevents binding of vitronectin to the
integrinRVâ3 playing a role in tumor cell adhesion, angiogenesis,
and osteoporosis.4 The selectivity profile of these antiadhesive
cyclopeptides is rationalized by a mutually different presentation

of the pharmacophoric groups. The RGD motif is found to occupy
positions i + 1 to i + 3 of a â-turn in the RIIbâ3 selective
hexapeptide1 while it resides in positionsi to i + 2 of a regular
γ-turn in theRVâ3 selective pentapeptide2.

We performed a systematicâ-amino acid scan on the cyclic
model peptides with permutational replacement of oneR-amino
acid by the correspondingâ-analogue.5 The development of
methodology for on-resin cyclization was a precondition for
parallel synthesis of cyclic peptides.6 The peptides modified by
â-amino acids are active integrin antagonists (RIIbâ3 andRVâ3).7

The cyclic pentapeptide3 inhibits thrombocyte aggregation
(RIIbâ3) with an IC50 value comparable to that of the known
hexapeptide1 (Figure 1). The RGD sequence in3 is found in
positionsi + 1 to i + 3 of a â-turn (âII ′-type characteristics)
according to the conformational analysis employing 2D NMR,
distance geometry, and restrained molecular dynamics simulations
(Figure 2). The temperature gradient of the chemical shift of Asp
HN (∆δ/∆T ) -0.9 ppb/K) hints toward involvement in a
hydrogen bond. Several characteristic NOE effects (e.g., strong:
Arg HR/Arg HN, Gly HN/Asp HN; medium: Arg HR/Gly HN) are
found. Theâ-amino acid residue occurs in the central position
of a tight reverse turn closely related to aγ-turn conformation,
the only difference being the insertion of a single carbon atom
into the peptide backbone (Ψγ-turn).

The mutual superposition of the solution-derived conformations
of 3 and1 reveals a satisfactory overlay of the peptide backbones
and of the CRfCâ vectors which may explain the comparable
biological activities of both peptides. These results suggest that
the â-amino acid acts as a turn mimetic, adopting aΨγ-turn
conformation.

Pentapeptide4 demonstrates the full extent of the structural
bias exerted by a singleâ-amino acid residue on a cyclic
pentapeptide. Two inducers of secondary structure, aâ-amino
acid and aD-amino acid are arranged in a noncooperative manner.
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F.; Garcı´a-Alvarez, M.; Navas, J. J.; Alema´n, C.; Muñoz-Guerra, S.
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Figure 1. Biological activity of the peptides examined.

Figure 2. Solution conformation of3 and4 in DMSO-d6. D-â-Phe and
â-Leu induce aΨγ-turn each (upper part of the molecule).
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While the latter usually prefers positioni + 1 in aâII ′-turn, it is
found in positioni + 3 in 4. â-Leucine on the other hand is again
placed in the central position of aΨγ-turn (Figure 2). Flat
temperature gradients are observed forD-Phe HN and Arg HN.
Again, strong (Gly HR,pro-R/Gly HN) and medium (Asp HR/Asp
HN, Gly HR,pro-R/Asp HN, Asp HN/D-Phe HN, Asp HR/D-Phe HN)
NOE effects are observed. A slight deviation from the ideal torsion
angles of aâII ′-turn is due to partialγi-turn formation around
Asp. We conclude that aâ-amino acid may possess a higher
conformational bias than aD-amino acid. The formal replacement
of D-Phe-Val-Gly in 1 by D-â-Phe-Val (â-turn f Ψγ-turn)
obviously does not induce a significant change within the
pharmacophoric RGD region;1 and3 also display comparable
affinity toward RIIbâ3. Given the results obtained on3 and4, a
â-amino acid residue stabilizes aΨγ-turn conformation in a cyclic
peptide (Figure 2).

On the basis of this assumption, we extended our studies on
the design of cyclic tetrapeptides containing aâ-amino acid as
Ψγ-turn inducers (Figure 3). Again, a highly active and selective
cyclic RGD peptide of defined 3D structure could be used as a
strategic platform to test our hypothesis. Within c-(-Arg-Gly-Asp-
D-Phe-Val-) 2 the regularγ-turn, formed by the recognition
tripeptide RGD, was identified to be crucial for the high affinity
toward the integrinRVâ3, as shown by the NMR-derived solution
conformation. Consequently, the structural replacement of the
dipeptide sequenceD-Phe-Val in2 by theâ-amino acidD-â-HPhe
yielded the cyclic tetrapeptide7. And indeed, 7 possesses
nanomolar affinity to the isolated integrinRVâ3 (IC50 ) 63 nM)
with a remarkable selectivity [IC50 (RIIbâ3) > 300µM]. The results
from experimental structure determination by means of 2D NMR
and molecular dynamics simulations confirm our initial hypoth-
esis. Asp HN displays remarkable temperature gradients:∆δ/∆T
(DMSO-d6) ) +0.8 ppb/K;∆δ/∆T (H2O/D2O) ) -3.1 ppb/K.
Again, strong NOE effects (Arg HN/Asp HN, Gly HN/Arg HR;
Gly HN/Gly HR,pro-R) are found.

As anticipated, theâ-amino acid is found in the central position
of the Ψγ-turn, thus inducing the required regularyγ-turn for
the opposite peptide portion (Figure 4). This arrangement is
comparable to that of2; the conformations of2 and7 within the
pharmacophoric regions are in good agreement. The rationally
designed cyclic tetrapeptide7 is a selective nanomolarRVâ3

antagonist. The high activity and pronounced selectivity render
7 a potential lead structure which is under further optimization
in our group.

The overlay of7 and 2 clearly demonstrates the structural
resemblance of the peptide backbone and of the vectors CRfCâ

of Arg and Asp, respectively (Figure 5). The smaller ring size of
7 (13-membered ring) in comparison to2 (15-membered ring)
might account for the decreased (60-fold) affinity. Improper
arrangement of the phenyl ring or of the Phe HN group might
result in a weaker hydrophobic interaction or a weaker hydrogen
bond between peptide and integrin. The relevance of peptide
structures based on NMR studies in DMSO is often questioned
because of the nonphysiological conditions. We examined the
conformational behavior of7 in water by NMR and could not
find any significant differences in the NOE constraints and
backbone torsion angles.

Hence, the targeted application ofâ-amino acids in the design
of cyclic peptides allows the control of the peptide backbone
conformation such that these non-native building blocks clearly
prefer to adoptΨγ-turns. These findings can generally be utilized
in the de novo design of biologically active cyclopeptides, since
the spatial orientation of side chains exposing potential pharma-
cophoric groups can be pre-defined by incorporation of tailor-
made â-amino acids in appropriate sequential positions. The
controlled employment ofâ-amino acids together with their
structural preferences undoubtedly enriches the methodological
toolbox which is currently used for a stepwise reduction of native
peptidic character of lead sequences toward peptidomimetic lead
compounds within pharmaceutical research.
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Figure 3. Rational design of anRVâ3 antagonist by incorporation of a
â-amino acid as aΨγ-turn inducer.

Figure 4. Solution conformation of7 in DMSO-d6. D-â-HPhe induces
a Ψγ-turn (upper part of the molecule); the RGD sequence forms a
complementaryγ-turn (Gly: φ ) 97°, ψ ) -54°).

Figure 5. Overlay of the solution conformations of the cyclic pentapep-
tide c-(-Arg-Gly-Asp-D-Phe-Val-) 2 (light; only Arg-Gly-Asp-D-Phe
displayed) and of the cyclic tetrapeptide c-(-Arg-Gly-Asp-D-â-HPhe-)7.
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